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The coefficient of restitution (COR) for a solid object such as a baseball, colliding 
with a perfectly rigid wall can be defined as the ratio of the outgoing speed to the 
incoming speed. When a hardened steel ball bearing collides with a large hardened steel 
plate, the collision has a COR close to one.  On the other extreme, when a foam (Nerft™) 
ball collides with the same plate, the collision has a COR of nearly zero.  It seems to be 
generally (though not always) true that flexible objects more often suffer low COR 
collisions, while rigid objects are more likely to undergo higher COR collisions.  The 
intent here is to explain this behavior in solids by studying mass/spring systems. 

 
I. COR and Elastic Collisions 

 
The COR is related to the conversion of the initial kinetic energy into internal 

energy during the collision.  For the baseball collision described above, the COR would 
be one if all the initial kinetic energy were conserved by appearing as the kinetic energy 
of the outgoing ball.  You could imagine the COR dropping as some property of the ball 
is varied and the collision repeated1.  As the COR decreases toward zero, a greater and 
greater fraction of the initial kinetic energy is converted to internal energy in the ball.  So, 
the COR is one for elastic collisions and less than one for inelastic collisions. 

 
Webster’s2 defines the word elastic to mean, “easily stretched or expanded,” while 

synonyms such as “inflexible” and “unyielding” are given for inelastic.  It is quite ironic 
that elastic objects tend to experience inelastic collisions and inelastic objects are more 
likely to undergo elastic collisions.  In fact, it is possible that this disparity between 
common language and technical jargon is a source of confusion for our students. 

 
II.  A Very Simple Model of a Solid 
 
 Modeling a solid as a collection of masses and springs can have pedagogic 
benefits because students have a sense, perhaps from chemical models, that solids are 
composed of atoms (masses) held in place by electromagnetic forces (springs).  Ganiel3 
describes a lecture demonstration using a cart carrying masses and springs that illustrates 
where the “missing” kinetic energy goes in an inelastic collision.  Zou4 improved the 
design of the cart and shared a series of guided-inquiry learning activities for their use. 
Other authors have attempted to understand the transfer of mechanical energy into 
internal energy using mass and spring models5,6,7. 
 

Reducing the mass and spring model as far as possible while still allowing for 
internal energy, leaves two masses, m, connected by a spring of spring constant, k, as 



shown in Figure 1. The masses are infinitely rigid 
and have no internal structure, so they can’t 
possess any internal energy.  The internal energy 
of this system is in the vibrations associated with 
the spring. 
 
 Figure 2 illustrates the collision of our 
mass/spring system with a perfectly rigid wall, one 
that doesn’t absorb any internal energy. The 
incoming speed of the object is vo.  Both masses initially move at this speed and the 
spring is uncompressed, so the only energy in the object is the kinetic energy of the 
masses. The total energy of the system is, 
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After the collision, the mass that collides with the wall has a speed v1 and the 

other mass has a speed v2.  Now, the speed of the center of mass is 
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v = 1
2 (v1 + v2 )  and the 

kinetic energy of the center of mass is, 
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This kinetic energy of the center of mass is equivalent to the macroscopic kinetic energy 
of the object.  The remainder of the energy goes into the internal energy associated with 
the oscillations of the mass/spring system, 
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This energy is equivalent macroscopically to the internal thermal energy of the object.  If 
the macroscopic kinetic energy is conserved, then the collision is macroscopically elastic.  
That is, 
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Uint = 0⇒  elastic collision (4) 
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Uint > 0⇒  inelastic collision. 
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Figure 1: The colliding object 
is represented by two equal 
masses, m, connected by a 
spring of spring constant, k. 
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Figure 2: The collision of the object with a 
perfectly rigid wall. 
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 The COR of the collision is the ratio of the center of mass velocity after the 
collision to the center of mass velocity before, 

 

€ 

COR = −
vcm, f
vcm,i

= −
1
2 (v1 + v2)
1
2 (vo + vo)

= −
v1 + v2
2vo

. (5) 

The COR can be related directly to the kinetic energies, 
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Therefore, the COR is one for elastic collisions.  As the COR gets smaller, more and 
more of the initial kinetic energy is converted to the internal energy in the mass/spring 
system resulting in a COR less than one.  For the remainder of this discussion we will 
focus on the COR keeping in mind that it is a surrogate for the energy transferred to 
internal energy. 
 
III.  A Naïve Model of a Collision 
 

In our very simple model of a 
solid, the only available parameter to 
vary is the spring constant.  A simple 
thought is that a very large spring 
constant models a very rigid object, 
while a very small spring constant 
models a very flexible object.  We can 
then look for variations in the COR 
due to the rigidity of the simple solid.  
The mass/spring system heads toward 
the wall as shown in Figure 3a.  When 
the mass first collides with the wall, it 
instantaneously reverses direction and 
keeps the same velocity, since neither 
the wall nor the mass can absorb any 
internal energy.   
 

Now the two masses are 
heading toward each other at the same 
speed with the uncompressed spring 
between them as in Figure 3b.  Notice 
that the mass/spring system has no 
center of mass velocity.  Soon, both 
masses are at rest with the compressed 
spring between them as in Figure 3c.  
The masses now reverse direction and 
begin to speed up.  All the while, the 
center of mass has not moved.  When 
the mass is just about to strike the wall 
again, it is traveling at the same speed 

Figure 3: Two collisions of the mass/spring 
system with a perfectly rigid wall.  Note that 
the center of mass remains fixed from the 
time of the first collision until the end of the 
second collision. 
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it had before the first collision.  Meanwhile the other mass has the same speed as before, 
but has reversed direction as shown in Figure 3d.   The spring is now uncompressed.  The 
mass collides with the wall and reverses direction again.  Now, both masses are headed 
away from the wall with the same speed as they arrived and the spring is uncompressed 
between them as in Figure 3e.    

 
The COR for this collision appears to be zero after the first bounce off the wall 

because the center of mass of the system in Figures 3b, 3c, and 3d is at rest and all of the 
energy is in the internal motion of the mass/spring system.  However, after the second 
bounce, the COR is one and the collision is elastic regardless of the spring constant. Our 
naïve idea that the rigidity of an object can be modeled by varying the internal spring 
constant seems doomed8.  However, the force exerted by the wall on the mass during the 
collision is actually far more complex than the instantaneous impulse we have assumed.  
The “devil is in the details” of the collision which can be modeled using the speed of 
compressional waves that travel along the spring. Roura9 presents a very clean conceptual 
discussion of this issue.  
 
IV.  Toward a Better Model 

 
About the simplest way to deal with the intricacies of the collision with the wall is 

to use a second spring to moderate it.  Cross10 applies this model to explain the famous 
basketball and tennis ball demo.  In our case, two equal masses, m, joined by an internal 
spring of spring constant, k,  collide with a solid massive wall.  The collision is mediated 
by a second external spring of spring constant, βk, which can only exert forces in 
compression and not in extension.  The springs both have the same natural length, a, as 
shown in Figure 4.  Large values of β model a solid with weak internal springs or one 
that is fairly flexible, while small values of β suggest a solid with strong internal springs 
or one that is rather rigid. 
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Figure 4: Two equal masses, m, joined by a spring of spring constant, k, and natural 
length, a, collide with a perfectly rigid wall.  The collision is mediated by a second spring 
of spring constant, βk.  



 The goal is to follow the motion of the system until it stops interacting with the 
wall (x1 > a).  Then find the center of mass speed of the system to calculate the COR for 
the collision.  Writing Newton’s Second Law for each mass when x1 < a, 
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m d2x1
dt 2

= βk(a − x1) − k[a − (x2 − x1)]  (7) 
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m d2x2
dt 2

= +k[a − (x2 − x1)]. (8) 

When the system is not interacting with the wall (x1 > a), the Second Law equations are 
the same except β = 0.  Equations 7 and 8 are subject to the initial conditions, 
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x1(0) = a, 
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x2(0) = 2a , 
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˙ x 1(0) = −vo , and 

€ 

˙ x 2(0) = −vo.  (9) 
 
If you are enamored with elegance, closed form 

solutions, and advanced mathematics, you can solve 
these equations by the method of normal modes11.  If 
you are less skilled and willing to tolerate numerical 
round off errors, you can solve them numerically.  This 
author naturally chose the later. 

 
By varying the value of β, you can go from a 

very gentle collision with a stout internal spring (small 
β) to a very abrupt collision (large β) with a soft 
internal spring.  The data from the calculations are 
summarized in Table I.  The second column is the COR 
after the first bounce of the leftmost mass.  For large β, 
the COR is small after the first bounce, exactly as 
described earlier for the mass/spring system of Figure 
3.  After one bounce, all the energy is in the internal 
motion of the mass/spring system as in Figures 3b, c, 
and d.  The second column is the COR after the second 
bounce.  For large β, the COR is one after the second 
bounce, in agreement with the earlier analysis of Figure 
3e.  The motion of each mass as a function of time for 
β = 10 is shown in Figure 5.  Notice that there is very 
little oscillatory motion as the mass/spring system 
leaves the wall consistent with a COR near one. 
 

For small β the COR is also equal to one.  The case of β = 0.1 is also shown in 
Figure 5.  Notice again there is almost no oscillatory motion as the mass/spring system 
exits.  However, for intermediate values of β the COR is noticeably less than one.  In 
Figure 5 the graph for β=2 shown illustrating a modest amount of oscillatory motion after 
the interaction with the wall because the COR has now dropped below one. 

β COR1 COR2 COR 
100 0.005 1.000 1.000 
50 0.010 1.000 1.000 
20 0.025 0.997 0.997 
10 0.052 0.990 0.990 

5.0 0.119 0.965 0.965 
4.5 0.138 0.957 0.957 
4.1 0.159 0.948 0.948 
4.0 0.165 0.945 0.945 
3.9 0.173 0.941 0.941 
3.8 0.936  0.936 
3.0 0.896  0.896 
2.4 0.878  0.878 
2.2 0.877  0.877 
2.0 0.882  0.882 
1.0 0.974  0.974 
0.5 0.997  0.997 
0.2 0.999  0.999 
0.1 0.999  0.999 
 
Table I: The COR as a 
function of β after each 
bounce and total. 
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Figure 6: COR vs. β for the two mass and 
spring system. 

 
 
A graph of COR vs. β is the 

subject of Figure 6.  While the COR is 
one for both large and small values of 
β, it drops at intermediate values.  
Once again our simple idea that the 
rigidity of an object can be modeled 
by varying the internal spring constant 
appears to be thwarted. 

 
V.  Resonance Rears It’s Head 

 
The shape of Figure 6 suggests 

that we are looking at a resonance 
phenomenon.  The internal spring has 
a natural oscillation as illustrated in 
Figures 3b, c, and d.  Since the cm is 
fixed, the frequency will be the same 
as that of a single mass oscillating on a 
spring of half the length and therefore, 
twice the spring constant so, 
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ω int = 2k
m .  (10) 

The external spring, which has a spring constant of βk is acting on the system 
which has a mass of 2m.  It has a natural frequency of, 
 

€ 

ωext = βk
2m .  (11) 

The maximum energy will be coupled into the internal spring when it is driven at 
its natural frequency by the external spring, 
 

€ 

ωext =ω int ⇒
βk
2m = 2k

m ⇒β = 4 .   (12) 
Of course, you will immediately notice that the minimum is actually closer to β=2 

than β=4.  Looking at the graphs in Figure 5, you will see that it is only for low values of 
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Figure 5: Position vs. time graphs for each mass.  The blue line tracks the mass that 
interacts with the wall via the external spring while the red line follows the motion of 
the other mass.  The horizontal line is at x = a where the external spring stops acting on 
the mass/spring system. 



β that the motion of the external spring is close to simple harmonic.  For higher values of 
β the motion is more complex and therefore so is the force exerted by the external spring 
on the mass/spring system.  The mass/spring system could be treated as a forced 
harmonic oscillator. 

 
VI.  The Forced Harmonic Oscillator 

 
To treat the mass/spring system as a forced oscillator let’s go back to the Second 

Law equations (equations 7 and 8) and replace the external spring with a time dependent 
force, 
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m d2x1
dt 2

= F(t) − k[a − (x2 − x1)]  (13) 
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m d2x2
dt 2

= +k[a − (x2 − x1)]. (14) 

Rewriting in terms of the center of mass and the displacement of the masses from their 
equilibrium separation, 
 

€ 

xcm ≡
x1 +x2
2  and  
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xrel ≡ a − (x2 − x1) . (15) 
The Second Law equations become, 
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2m d2xcm
dt 2

= F(t)  and (16) 
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m d2xrel
dt 2

+ 2kxrel = F(t) . (17) 

 
 Equation 16 is simply a statement that the force exerted by the wall, F(t) , divided 
by the total mass, 2m, is equal to the acceleration of the center of mass.  Newton would 
be pleased.  Equation 17 is the equation for the forced oscillation of our oscillator, which 
has a natural frequency of 

€ 

2k
m , in agreement with Equation 10.  The energy absorbed by 

the mass/spring system during the collision will appear as oscillations at this resonant 
frequency. 

At this point we could begin the traditional forced oscillator problem12.  However, 
that complex mathematics will obscure the point.  We just need to understand that the 
force exerted on the mass/spring system transmitted by the external spring, F(t), changes 
the center of mass motion of the system and excites oscillations within the system. This 
forcing function contains different frequencies.  The amount of oscillation excited 
depends upon the amount of the resonant frequency contained in the forcing function.   
As a result, we should not be surprised that Equation 12 only gives an approximate 
prediction for the frequency of the minimum COR. 

The interaction with the wall causing resonant oscillations in the mass/spring 
system not only explains the location of the COR minimum, it explains the low β (strong 
internal spring) and high β (weak internal spring) results.  For low β, the internal spring is 
strong and has a high resonant frequency.  The weak external spring means a long 
collision time with the wall, so the forcing function is predominantly composed of a few 
low frequencies.  The result is a mismatch with the high resonant frequency of the 
oscillator, very little oscillation will be excited, and a COR will be near one. 



For high β it is a bit more complicated.  The internal spring is weak and has a low 
resonant frequency.  The strong external spring has a very short collision time with the 
wall, so the forcing function is composed of broad collection of frequencies some of 
which are bound to be close enough to the resonant frequency of the oscillator causing 
oscillations in the system.  These can be seen in Table I after the first bounce, the COR is 
small.  

However, the system interacts with the wall a second time.  The time at which this 
happens is predominantly determined by the oscillation time of the internal spring.  The 
second collision again results in a forcing function that has the same broad collection of 
frequencies some of which are again close enough to the resonant frequency of the 
internal spring.  However, since the internal spring in now nearly half way through it’s 
oscillation, this second excitation is almost exactly out of phase with the first, canceling 
the oscillatory motion resulting in a COR that is close to one.  This is essentially the 
message of figure 3. 

Our two-mass/one-spring system has only one natural frequency, 

€ 

2k
m .  Since the 

forcing function is a composed of a collection of frequencies, if we allow our system to 
have more natural resonances, something interesting is bound to happen. 
 
VII.  More Masses and Springs 
 
 We can create more natural resonances, if we add more masses and springs to our 
system.  So, let the fun begin!  Each time we add a spring and a mass to the right hand 
side we add another coupled equation to the equations of motion.  This creates an 
additional natural frequency and increases the complexity of the forcing function.  Since 
we don’t actually need the normal mode frequencies anyway (we just need to understand 
that they exist) and we have been able to use numerical solutions to this point, let’s just 
madly calculate.  The result is the COR versus β curve shown in Figure 7. 
 
 Each added natural frequency allows the mass/spring system to absorb more 
internal energy because of the added natural frequency.  In the three mass system you can 
begin to see that the COR for high β is no longer tending toward one.  By the time you 
get to four masses, the strongly suggestive single resonance shape of the two-mass 
system is entirely gone.  At last, we begin to see the general trend we have been seeking, 
rigid low β objects tending to have higher COR’s than flexible high β objects.  All the 
curves show some structural features owing to the natural resonances of the system. 
 

For low β, the internal springs are strong and have a collection of high resonant 
frequencies.  The weak external spring means a long collision time with the wall, so the 
forcing function is predominantly composed of low frequencies.  The result is a mismatch 
with the high resonant frequencies of the oscillator, very little oscillation will be excited, 
and a COR will be near one regardless of the number of masses and springs. 

 
For high β, the internal springs are weak and have a collection of low resonant 

frequencies.  The strong external spring has a short collision time with the wall, so the 
forcing function is composed of broad collection of frequencies some of which are close 
enough to the resonant frequencies of the oscillator to cause oscillations in the system.  



However, for high β the system interacts with the wall multiple times.  Each time results 
in a forcing function that has the same broad collection of frequencies.  However, unlike 
the two mass case, there are multiple resonant frequencies so the phase relationship 
between the forcing functions cannot exactly cancel out the motion in all the distinct 
resonances. Therefore, energy remains in the different resonant modes resulting in a 
smaller COR.   

 
The general rule, that stiffer, more rigid objects have higher COR collisions while 

more flexible objects have lower COR collisions can be understood in terms of basic 
mass/spring systems.

Figure 7: COR versus b for 2 masses (blue), 3 masses (red), 4 masses (yellow), and 5 
masses (green). 



 
 
                                                 
1 D. T. Kagan,  “The coefficient of restitution of baseballs as a function of relative 
humidity” Phys. Teach. 42, 330 (2004). 
2 Webster’s New Collegiate Dictionary (G. & C. Merriam Co., Springfield, MA, 1974). 
3 U. Ganiel, “Elastic and inelastic collisions: A model,” Phys. Teach. 30, 18-19 (1992).  
4 X. Zou, “Making internal thermal energy visible” Phys. Teach. 42, 343-345(2003). 
5 N. D. Newby Jr., “Linear collisions with harmonic oscillator forces: The inverse 
scattering problem,” Am. J. Phys., 47 (2), 161-165 (1979). 
6 J. M. Aguirregabiria, A. Hernandez, and M. Rivas, “A simple model for inelastic 
collisions,” Am. J. Phys., 76 (11), 1071-1073 (2008). 
7 R. Gruebel, J. Dennis, and L. Choate, “A variable coefficient of restitution experiment 
on a linear air track,” Am. J. Phys., 39 (4), 447-449 (1971).  Actually this paper uses a 
pendulum to represent the internal energy. 
8 Reference 4 uses the naïve model and gets interesting results. However, instead of 
varying the spring constant, the mass of the non-colliding ball is varied.  This is 
unsatisfying because this model makes it appear as though the COR depends upon the 
mass of the colliding object.  The same holds for reference 5 where the COR depends 
upon the mass at the end of the pendulum that represents the internal energy. 
9 P. Roura, “Collision Duration in the Elastic Regime,” Phys. Teach. 35, 435-436 (1997). 
10 R. Cross, “Vertical bounce of two vertically aligned balls,” Am. J. Phys., 75 (11), 1009-
1016 (2007). 
11 F. S. Crawford, Waves – Berkeley Physics Course v.3 (McGraw-Hill, New York, 
1968), pp. 101-154. 
12M. L. Boas, Mathematical Methods in the Physical Sciences (John Wiley & Sons, New 
York, 1966), pp. 348-350 


